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PLASMA BRAIN DYNAMICS (PBD): 

II. QUANTUM EFFECTS ON CONSCIOUSNESS1 

 
John Z. G. Ma 

 

ABSTRACT: This article studies the quantum effect of the brain neuronal system on both normal 
and abnormal conscious states. It develops Plasma Brain Dynamics (PBD) to obtain a set of kinetic 
quantum-plasma Wigner-Poisson equations. The model is established under typical electrostatic 
and collision-free conditions in both the absence and presence of an external magnetic field. The 
quantum perturbation is solved analytically by employing a backward-mapping approach to the 
motion of electrons. Results expose that the quantum perturbation turns out to be zero at normal 
conscious states; but no more than 11% of the classical perturbation under assumed abnormal 
situations like a sudden head trauma, mood disorder, etc. The introduction of the magnetic field 
does not influence the results. 
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1. INTRODUCTION 

In the mid-1960s, Ricciardi & Umezawa first suggested the Quantum Brain Dynamics 
(QBD).2 The model  has been developed over the last half century, and significant 
progress has been made in recent years to account for the neuro-and-cognitive 

                                                           
1 Editor’s note: Foundations of Mind, the independent research group that has provided the 
papers for this special edition, has never taken either corporate or state money and is financed 
entirely by donations. Authors keep copyright without paying. The typical fee for this charged by 
open-access journals such as those published by PLOS, is around $2k. If you value this project, 
and wish to see further such proceedings from this group, we ask you to consider donating to 
Foundations of Mind – as little as $5 per download, through their website: 
http://www.foundationsofmind.org/donate. This will ensure there will be further published 
proceedings on the foundations of mind like this one for you and others to enjoy free. 
2 Ricciardi LM, Umezawa H 1967. Brain and physics of many-body problems. Kybernetik, 4, 2, 
pp.44-48. 
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mechanism of human consciousness,3 a process dominated by the prefrontal cortex in 
the brain neuronal system to express the brain cognitive ability.4 Among the 
achievements stand Penrose’s neural “firing and not firing” model5 and Penrose-
Sameroff’s neural “microtubule” one.6 Nevertheless, studies on the neural de-coherence 
rates indicated that the consciousness should be thought of as a “classical rather than 
quantum” neural process, both for regular neuron firing and for kink-like polarization 
excitations in brain microtubules.7 Consequently, the QBD paradigm have met serious 
challenges to provide not only convincing physical mechanisms but also qualitative or 
quantitative data-fit visualizations of holistic neuronal behaviours, particularly after the 
neuronal activities were found to adhere to long-range extracellular flows,8 and the 
collective behaviour of the neuronal network to comply with stochastic movements.9 

New advances in brain studies exhibit that the axonal actions of the neuronal system 
are similar to the scaled equivalents of plasma lightning,10 while the cerebral cortex and 
its white matter system of the cortico-cortical fibres turn out to be a system somewhat 
analogous to the earth’s ionospheric shell.11 The research trend inspired us to develop an 
alternative model, namely, Plasma Brain Dynamics (PBD) which was proposed in the 

                                                           
3 E.g., (1) Başar E 2010. From quantum mechanics to the quantum brain. NeuroQuantology, 8, 
3, pp.319-321. (2) Vitiello G 2011. Hiroomi Umezawa and quantum field theory. 
NeuroQuantology, 9, 3, pp.402-412. (3) Hameroff S 2012. How quantum brain biology can rescue 
conscious free will. Front Integr Neurosci. 6, 93, pp.1-17. (4) Sakane S, Hiramatsu T, Matsui T 
2016. Neural network for quantum brain dynamics: 4D CP1+U(1) gauge theory on lattice and its 
phase structure. arXiv:1610.05443v1 [cond-mat.dis-nn]. 
4 Gabi M, Neves K, Masseron C, et al 2016. No relative expansion of the number of prefrontal 
neurons in primate and human evolution. PNAS, 113, 34, 9617-9622. 
5 Penrose R 1989. The emperor’s new mind: concerning computers, minds and the laws of physics. 
Oxford: Oxford University Press. 
6 Hameroff S, Penrose R 2003. Conscious events as orchestrated space-time selections. 
NeuroQuant. 1, pp.10-35. 
7 Tegmark M 2000. Importance of quantum de-coherence in brain processes. Phys Rev E 61, 4 
Pt B, pp.4194-4206. 
8 (1) Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ 2001. Long-range temporal 
correlations and scaling behavior in human brain oscillations. J Neurosci, 21, 4, pp.1370-1377. (2) 
Vuksanovic V, Hövel P 2014. Functional connectivity of distant cortical regions: Role of remote 
synchronization and symmetry in interactions. NeuroImage, 97, pp.1-8.  
9 Touboul J 2012. Mean-field equations for stochastic firing-rate neural fields with delays: 
Derivation and noise-induced transitions. Phys D: Nonlin Phenomena, 241, 15, pp.1223-1244. 
10 Persinger MA 2012. Brain electromagnetic activity and lightning: potentially congruent scale-
invariant quantitative properties. Front Integr Neurosci, 6, 19, pp.1-7. 
11 Kozlowski M, Marciak-Kozlowska J 2012. On the Temperature and Energy of the Brain Waves: 
Is there Any Connection with Early Universe? NeuroQuantology, 10, 3, pp.443-452. 
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early 1970s12 to deal with the collective features of the brain consciousness. Our work set 
up a set of two-fluid, collision-free Vlasov-Maxwell equations to obtain self-similar 
differential equations which were used to simulate the excitation and propagation of 
nonlinear brain EEG waves.13 Results show that the waves can be classified into two 
groups: Group-1, complex stormlike waves (α, β, and γ); Group-2, simple quasilinear 
waves (θ and δ). Group-1 packets are composed of three ingredients: high-frequency ion-
acoustic (IA) mode, intermediate-frequency lower-hybrid (LH) mode, and, low-
frequency ion-cyclotron (IC) mode; by contrast, Group-2 waveforms fall within the IA 
band, featured by one or a combination of the three envelopes: sinusoidal, sawtooth, and 
spiky/bipolar.  

Though the PBD paradigm offered a more effective tool than the QBD one to 
expose the excitation and propagation of measurable brain waves, we notice that the 
human consciousness resides mainly in the outer layer of the cerebrum, cerebral cortex, 
with a thickness of (2~5)×10-3 m and a surface area of 0.16~0.4 m2,14 giving a volume of 
(3.2~20)×10-4 m3. Because the adult male human brain of an average of 1.5 kg has 86 
billion neurons (nerve cells) and 85 billion non-neuronal cells,15 the average volume 
density of neurons turns out to be in the order of 1014 neurons/m3.16 These neurons are 
interconnected with each other with each neuron to link with up to 104 other neurons, 
forming a highly intricate system to pass signals via as many as 1000 trillion synaptic 
connections.17 What is more, in both the intracellular and extracellular spaces, the 
concentration of negative ions (124.0 mM) is far less than that of positive ones (317.5 mM), 
giving the charge number densities of 𝑛𝑛+ ≈ 1.9×1026 m-3, and 𝑛𝑛− ≈39% 𝑛𝑛+,18 with 𝑛𝑛+  ~ 
1/1000 of the molecular number density of water or the free electron density in copper, 
while the excess positive charges are balanced by the abundant electrons coming from 
the macromolecules such as nucleic acids and proteins in the brain to keep the brain 

                                                           
12 Hokkyo N 1972. A plasma model of brain dynamics. Prog. Theoret. Phys., 48, 4, pp.1191-1195. 
13 Ma J 2017. Plasma Brain Dynamics (PBD): A Mechanism for EEG Waves Under Human 
Consciousness. Cosmos & History, 13, 2, pp. 185-203. 
14 Nunez PL, Srinivasan R. 2006. Electric fields of the brain: The neurophysics of EEG, 2nd ed. 
Oxford: Oxford University Press, p.6. 
15 Herculano-Houzel S. (1) 2009. The human brain in numbers: A linearly scaled-up primate 
brain. Front. Human Neurosci. 3, 31, pp.1-11; (2) 2016. The human advantage: A new 
understanding of how our brain became remarkable. Cambridge, MA: MIT Press, p.79. 
16 Teplan M 2002. Fundamentals of EEG measurement. Measurement Sci. Rev. 2, 2, pp.1-11. 
17 Mastin L 2010. Neurons & synapses. In: The human memory. http://www.human-
memory.net/ brain_ neurons.html 
18 Phillips R, Kondev J, Theriot J 2013. Physical biology of the cell. 2nd Ed. Chapter 17: Biological 
electricity and the Hodgkin-Huxley model.  New York: Garland Science. Table 17.1. p.685. 
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electrically neutral.19  
Such a high charge density in the order of 1026 m-3 makes the brain plasma 

distinguishable from the classical low-density fusion or space plasmas which are 
characterized by the regimes in which the quantum effect can be totally negligible. It 
may be more appropriately defined as a new kind of so-called “quantum plasma” in 
which there coexists both the plasma and quantum effects, a state dwelled by some 
physical or astrophysical processes happening in, for example, the metallic 
nanostructure-arenas, semiconductors, or white dwarf stars.20 Such a non-classical 
system should not still be treated by employing the Vlasov-Maxwell equations. In this 
case, the Wigner-Poisson or Wigner-Maxwell equations come to the stage by 
incorporating the quantum term into account in the Vlasov equations under electrostatic 
or electromagnetic conditions, respectively. This term may exert an ineligible impact on 
the plasma system if any or both of the following conditions of the two dimension-free 
parameters, 𝜒𝜒1 and 𝜒𝜒2, are satisfied:21 
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in which 𝜒𝜒1 and 𝜒𝜒2 are the two dimension-free parameters; 𝑛𝑛0 = 𝑛𝑛+ ≈ 𝑛𝑛− is the mean-
field plasma density; 𝜆𝜆𝐵𝐵 = ℎ/(𝑚𝑚𝑒𝑒𝜐𝜐𝑇𝑇𝑇𝑇) is the electron thermal de Broglie wavelength in 
which ℎ = 6.63 × 10−34 J∙s is the Planck’s constant, 𝑚𝑚𝑒𝑒 = 9.11 × 10−31kg, 𝜐𝜐𝑇𝑇𝑇𝑇 is the 
most-probable speed of the thermal-equilibrium electrons which follow the Maxwell-
Boltzmann distribution, satisfying 1

2
𝑚𝑚𝑒𝑒𝜐𝜐𝑇𝑇𝑇𝑇2 = 𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒 where 𝑘𝑘𝐵𝐵 = 1.38 × 10−23 J/K is 

the Boltzmann constant and 𝑇𝑇𝑒𝑒 is the electron temperature; 𝑇𝑇𝐹𝐹 is the Fermi temperature; 
and 𝑇𝑇0 is the plasma thermal temperature with 𝑇𝑇0 ≈ 𝑇𝑇𝑒𝑒 for a locally thermodynamical 
quasi-equilibrium plasma system. For typical parameters of 𝑛𝑛~1026 m-3 and 𝑇𝑇0~300 K, 
we obtain 𝜆𝜆𝐵𝐵 = 7.28 nm, 𝜐𝜐𝑇𝑇𝑇𝑇 = 100 km/s, 𝑛𝑛0𝜆𝜆𝐵𝐵3 = 38.55, and 𝜒𝜒1 = 161.46 > 1, 
𝜒𝜒2 = 2.77 > 1. As a result, the brain plasma is non-classical and may be influenced by 
the quantum effect, if there are no additional factors to mitigate or cancel the effect. 

Albeit the fact mentioned above, our data-fitting EEG simulations were carried out 
within the reliable classical regime where the quantum interference was not encountered 
by the plasma brain dynamics. We therefore postulated that the quantum effect appeared 
not playing a significant role in brain consciousness. This means that there might exist 

                                                           
19 C.f., Jibu M, Yasue K 1995. Quantum brain dynamics and consciousness: an introduction. 
Amsterdam: John Benjamins Publishing. p.685.  
20 Manfredi G 2005. How to model quantum plasmas. Fields Inst. Commun., 46, pp.263-287. 
21 Ibid. 



 JOHN Z. G. MA 95 

some kind of mechanism which acts against the quantum uncertainty and damps out or 
neutralizes the quantum effect. This paper focuses on investigating the role played by 
the quantum term in the brain consciousness by generalizing PBD’s Vlasov-Maxwell 
equations with the extra quantum term, thus forming the Wigner-Maxwell equations. Its 
purpose is to give a clear answer to the dilemma of whether the quantum effect has an 
impact on the mental activities of the human brain.  

The layout of the paper is as follows: Section 2 introduces the quantum plasma 
model. A set of electrostatic Wigner-Poisson equations are given in the absence of an 
external magnetic field, 𝐵𝐵0, where an additional quantum term comes into being relative 
to the classical Vlasov-Maxwell equations under electrostatic conditions. Section 3 solves 
the Wigner-Poisson equations by applying the linearization approach. The perturbation 
of the quantum term is obtained to show the quantum effect on the unperturbed mean-
field property, and the results are extrapolated to a generalized case in the presence of 
𝐵𝐵0. Section 4 gives the conclusions of the study. SI units are used throughout the paper. 

2. QUANTUM PLASMA: WIGNER-POISSON EQUATIONS  

In classical plasmas at the sites of, such as, fusion, ionosphere or stars, constituent 
particles obey classical laws of physics, and it is unnecessary to consider their quantum 
nature. However, as the density increases or the temperature decreases to such a degree 
that the interparticle distance becomes comparable to the thermal de Broglie 
wavelength, the quantum effect starts to affect the properties and dynamics of the 
classical plasmas which are now known as quantum plasmas. With following 
assumptions, 22  

(1) an ideal plasma;  
(2) particle interaction via the classical electrodynamics only; 
(3) collision-free; 
(4) non-relativistic; and,  
(5) spin-free,  

the quantum plasmas can be described by either Wigner-Poisson or Wigner-Maxwell 
equations under the self-consistent collective electrostatic or electromagnetic conditions, 
respectively. To reduce the complexity of solving the problem while still being able to 
develop a tenable approach, we consider the simpler electrostatic case in the present 
study, and take it for granted that the plasma consists of only electrons of mass 𝑚𝑚𝑒𝑒, charge 
-e, and density 𝑛𝑛𝑒𝑒 = 𝑛𝑛−,  and one-species positively charged ions of mass 𝑚𝑚𝑖𝑖, charge +e, 

                                                           
22 (1) Tyshetskiy YO, Vladimirov SV, Kompaneets R 2013. Unusual physics of quantum plasmas. 
ISSN 1562-6016, 1-83/19, pp.76-80. (2) Vladimirov SV, Tyshetskiy YO, 2011. On description of a 
collisionless quantum plasma. Physics-Uspekhi, 54, 12, pp.1243-1256.  
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and density 𝑛𝑛𝑖𝑖 = 𝑛𝑛+ = 𝑛𝑛0, while ions are immobile but constitute the neutralizing 
background for the active electrons. In addition, as done in the previous work,12 we 
suggest that all the test particles of the brain quantum plasma under modeling are well 
inside the extracellular space thereby being able to neglect all the edge effects.  

Under the above simplifications, the set of kinetic Wigner-Poisson equations for 
electrons is as follows in the absence of an external magnetic field, 𝐵𝐵0:23 
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where the upper and the lower equations are the Wigner and Poission ones, respectively, 
while 𝑓𝑓 is the distribution function, 𝑡𝑡 is time, 𝐯𝐯 is electron velocity, 𝜑𝜑 is the self-consistent 
electrostatic potential, ℏ = ℎ/(2𝜋𝜋) is the Dirac constant, and 𝜀𝜀0 = 8.85 × 10−12 F/m 
is the permittivity of free space. Relative to the classical Vlasov-Maxwell equations under 
electrostatic conditions, this set of equations includes an additional quantum term. Note 
that the acceleration term, d𝐯𝐯/d𝑡𝑡, is equivalent to 𝑒𝑒∇𝜑𝜑/𝑚𝑚𝑒𝑒 in the absence of an external 
magnetic field.  Adopting a slab model with the only spatial variable, 𝑥𝑥, reduces Eq.(2) 
to the following, where 𝜐𝜐 is the electron speed along 𝑥𝑥: 
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In the above, substituting the 3rd-order partial derivative of 𝜑𝜑 in the RHS term of 

the upper equation with the RHS term of the lower equation yields 
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in which 𝜔𝜔𝑝𝑝𝑝𝑝 = �𝑛𝑛𝑒𝑒𝑒𝑒2/ (𝜀𝜀0𝑚𝑚𝑒𝑒) is the electron plasma angular frequency the mean-
field value of which is spatially uniform to give a mean-field thermal-equilibrium 

                                                           
23 Shukla PK, Eliasson B 2010. Nonlinear aspects of quantum plasma physics. Physics-Uspekhi, 
53, 1, pp.51-76. 
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Maxwell–Boltzmann distribution,𝑓𝑓0; it is 5.66 × 1014 rad/s for a typical value of 
𝑛𝑛𝑒𝑒~1026 m-3. The electron plasma frequency, 𝑓𝑓𝑝𝑝𝑝𝑝, and electron quantum energy, 𝐸𝐸𝑞𝑞𝑞𝑞, 
can be given as 𝑓𝑓𝑝𝑝𝑝𝑝 = 𝜔𝜔𝑝𝑝𝑝𝑝/ (2𝜋𝜋) = 9 × 1013 Hz, and 𝐸𝐸𝑞𝑞𝑞𝑞 = ℏ𝜔𝜔𝑝𝑝𝑝𝑝 = 6 × 10−20 J, 
respectively. Here,  𝐸𝐸𝑞𝑞𝑞𝑞 is a newly introduced parameter to evaluate the order of the 
electron quantum energy relative to the electron thermal energy, 𝐸𝐸𝑡𝑡𝑡𝑡 = 𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒, which 
turns out be 𝐸𝐸𝑡𝑡𝑡𝑡 = 0.41 × 10−20 J for a typical value of 𝑇𝑇0~300 K. Clearly, the ratio, 
𝜂𝜂, of the two energies is 𝜂𝜂 = 𝐸𝐸𝑞𝑞𝑞𝑞/𝐸𝐸𝑡𝑡𝑡𝑡~15. Besides, the electron thermal potential, 𝜑𝜑𝑒𝑒 =
𝐸𝐸𝑡𝑡𝑡𝑡/𝑒𝑒, is 26 mV, and the electron Debye length, 𝜆𝜆𝑒𝑒 = �𝜀𝜀0𝐸𝐸𝑡𝑡𝑡𝑡/(𝑛𝑛𝑒𝑒𝑒𝑒2), is 1.2 Å (the same 
order of the radii of isolated neutral atoms; note that the classical electron radius is 
~10−5 Å). Note that there exists a relation that 𝜐𝜐𝑇𝑇𝑇𝑇 = 2√2𝜋𝜋 𝑓𝑓𝑝𝑝𝑝𝑝𝜆𝜆𝑒𝑒. 

This equation is a semi-classical quantum Vlasov equation. However, unlike the 
classical case that 𝐷𝐷𝐷𝐷/𝐷𝐷𝐷𝐷 ≠ 0 owing to the RHS quantum ℏ-term in Eq.(4), the 
distribution function 𝑓𝑓 is not preserved, except for linear electric fields that leads to a 
vanishing ℏ-term due to 𝜕𝜕3𝜑𝜑/𝜕𝜕𝑥𝑥3 = 0, along with the classical characteristic equations 
of the electrons: 
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√2𝜋𝜋𝜂𝜂2/48 is a quantum coefficient: 
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Similarly, Eq.(5) becomes 
 

𝜐𝜐02 = 𝜐𝜐2 − 𝜑𝜑 (7) 
 
In Eq.(6), the contribution of the quantum effect depends not merely on 𝛼𝛼, but is 

determined by the product of 𝛼𝛼, the partial derivative of 𝜔𝜔𝑝𝑝𝑝𝑝2  over 𝑥𝑥, and the the 3rd-
order partial derivative of 𝑓𝑓 over 𝜐𝜐. That is, only ℰ itself is unable to govern the 
contribution of the quantum effect on any brain system. More importantly, the presence 
of the quantum effect makes it impossible to take the too spiky Wigner functions as the 
solution of the distribution function, 𝑓𝑓, which would be against the uncertainty principle, 
∫𝑓𝑓2d𝑥𝑥d𝜐𝜐 ≤ 𝑚𝑚𝑒𝑒𝑁𝑁𝑒𝑒2/ℎ (where 𝑁𝑁𝑒𝑒 is the total electron number); instead, the solution 
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should take the form of 𝑓𝑓 = 𝑓𝑓0 + 𝑓𝑓1, where 𝑓𝑓0 is the exact solution of Eq.(6) in the 
absence of the RHS quantum term; and, 𝑓𝑓1 is the leading quantum correction.24 
Adopting the previously developed backward-mapping approach25 to the motion of 
electrons which follow an initial Maxwellian function, together using Eq.(7), yields the 
mean-field 𝑓𝑓0 as follows: 

 

𝑓𝑓0 =
𝑛𝑛0
√𝜋𝜋

𝑒𝑒−𝜐𝜐02 =
𝑛𝑛0
√𝜋𝜋

𝑒𝑒𝜑𝜑−𝜐𝜐2  →   
𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

= −2𝜐𝜐𝑓𝑓0 , and,
𝜕𝜕3𝑓𝑓0
𝜕𝜕𝜐𝜐3

= 4𝜐𝜐(3 − 2𝜐𝜐2)𝑓𝑓0  (8) 

3. MAGNITUDE OF QUANTUM PERTURBATION   

3.1 In the absence of  external magnetic field, 𝐵𝐵0 

In the electrostatic brain, the electric potential 𝜑𝜑 comes into being as a perturbation 𝜑𝜑1 
of the mean-field state at which the electron characteristics of motion is determined by 
the integrated acceleration d𝜐𝜐/d𝑡𝑡. In the absence of an external magnetic field, 𝐵𝐵0, 
replacing 𝑓𝑓 with  𝑓𝑓0 + 𝑓𝑓1 and 𝜑𝜑 = 𝜑𝜑1 in the Wigner-Poisson equation, Eq.(6), offers the 
linearized semi-classical quantum Vlasov equation in which Eq.(5) is kept unchanged: 

 
𝐷𝐷𝑓𝑓1
𝐷𝐷𝐷𝐷

=
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕

+ 2√2𝜋𝜋 𝜐𝜐
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕

+
d𝜐𝜐
d𝑡𝑡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕

= 𝛼𝛼 
𝜕𝜕3𝜑𝜑1
𝜕𝜕𝑥𝑥3

𝜕𝜕3𝑓𝑓0
𝜕𝜕𝜐𝜐3

− √2𝜋𝜋 
𝜕𝜕𝜑𝜑1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

 (9) 

 
 
In this equation, there are two RHS terms, one is quantum term, a product of the 

two 3rd-order derivatives of both 𝜑𝜑 and 𝑓𝑓0; the other one is the classical term, a product 
of the two 1st-order derivatives of 𝜑𝜑 and 𝑓𝑓0. Using the above estimated 𝜂𝜂 value, the ratio 
of the two coefficients of the two terms is 𝛼𝛼/�√2𝜋𝜋� = 𝜂𝜂2/48 = 4.69. Clearly, it is the 
competition between the quantum and the classical terms which determines the 
contribution of the quantum effect.      

Using the Fourier transform in time and space and expressing any perturbations to 
vary with ~𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔) where 𝑘𝑘 and 𝜔𝜔 are the electrostatic wave number and angular 
frequency in units of 𝜆𝜆𝑒𝑒−1 and 𝑓𝑓𝑝𝑝𝑝𝑝, respectively, we have the dimension-free potential 
perturbation as follows:  

                                                           
24 Haas F 2011. An introduction to quantum plasmas. Brazilian Journal of Physics, 41, 4–6, 
pp.349–363.  
25 Ma J, St.-Maurice JP 2015. Backward mapping solutions of the Boltzmann equation in 
cylindrically symmetric, uniformly charged auroral ionosphere. Astrophys. Space Sci., 357: 104, 
10.1007/s10509-015-2331-6. 
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𝜑𝜑1(𝑥𝑥, 𝑡𝑡) = 𝜑𝜑10𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔)  →  
𝜕𝜕𝜑𝜑1
𝜕𝜕𝜕𝜕

= 𝑖𝑖𝑖𝑖𝜑𝜑1, and,
𝜕𝜕3𝜑𝜑1
𝜕𝜕𝑥𝑥3

= −𝑖𝑖𝑘𝑘3𝜑𝜑1 (10) 

 
Here, 𝜑𝜑10 is the dimension-free amplitude of the potential normalized by the 

electron thermal potential, 𝜑𝜑𝑒𝑒.  
Integrating Eq.(9) gives 
 

𝑓𝑓1(𝑥𝑥, 𝜐𝜐, 𝑡𝑡) = � d𝑡𝑡′
𝑡𝑡

−∞
�𝛼𝛼 

𝜕𝜕3𝜑𝜑1
𝜕𝜕𝑥𝑥3

𝜕𝜕3𝑓𝑓0
𝜕𝜕𝜐𝜐3

− √2𝜋𝜋 
𝜕𝜕𝜑𝜑1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕

�
𝑥𝑥=𝑥𝑥�𝑡𝑡′�,𝜐𝜐=𝜐𝜐�𝑡𝑡′� 

 (11) 

 
By applying Eqs.(7,8,10) and considering the electron kinetic energy of the 

unperturbed orbits is a constant of motion for 𝜑𝜑0 = 0, Eq.(11) is 
 

𝑓𝑓1
𝑓𝑓0

= 2𝜑𝜑10�√2𝜋𝜋 − 2𝛼𝛼𝑘𝑘2(3− 2𝜐𝜐2)� ∙ 𝐼𝐼 (12) 

 
where the derivation of 𝐼𝐼 is obtained by reducing a generalized 3D case26 to the present 
1D case with 
 

𝐼𝐼 = � 𝑖𝑖𝑖𝑖𝜐𝜐′𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥′−𝜔𝜔𝑡𝑡′)d𝑡𝑡′
𝑡𝑡

−∞
= 𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔) 𝑘𝑘𝑘𝑘

𝑘𝑘𝑘𝑘 − 𝜔𝜔
 (13) 

 
Therefore, Eq.(12) becomes 
 

𝑓𝑓1
𝑓𝑓0

=
2�√2𝜋𝜋 − 2𝛼𝛼𝑘𝑘2(3− 2𝜐𝜐2)�

1 −𝜔𝜔/(𝑘𝑘𝑘𝑘) 𝜑𝜑1(𝑥𝑥, 𝑡𝑡) (14) 

 
In the above, the 𝜔𝜔-𝑘𝑘 relation is determined by the dispersion relation obtained from 

solving the electrostatic wave equations of electrons:27  
 

𝜔𝜔2 = 𝜔𝜔𝑝𝑝𝑝𝑝2 + 𝛾𝛾𝑒𝑒
2
𝑘𝑘2𝜐𝜐𝑇𝑇𝑇𝑇2  →  𝜔𝜔2 = 4𝜋𝜋2(1 + 𝛾𝛾𝑒𝑒𝑘𝑘2) (dimension-free) (15) 

 

                                                           
26 Bellan PM 2006. Fundamentals of Plasma Physics. Cambridge: Cambridge University Press. 
pp.266-270. 
27 E.g., Baumjohann W, Treumann RA 1997. Basic Space Plasma Physics. London: Imperial 
College Press, p.202. 
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where 𝛾𝛾𝑒𝑒 is the ratio of specific heats; here,𝛾𝛾𝑒𝑒 = 3 because the density compressions are 
one-dimensional in x only. Eq.(15) is the dispersion relation of the Langmuir waves. It 
determines the dependence of the wave frequency on the wavenumber. Obviously, the 
electron thermal motion leads to a dispersion of the electron plasma oscillations by 
introducing the dependence of the wave frequency 𝜔𝜔 on wavenumber 𝑘𝑘. In general, 𝑘𝑘 
(equivalently, the wavelength) is not stable and able to vary in the range from zero to 
1/�𝛾𝛾𝑒𝑒 = 0.58, resulting in a change in the frequency of the electron plasma waves, 
roughly speaking, between 𝜔𝜔 and √2𝜔𝜔. 

Using Eq.(15) in Eq.(14) gives 
 

𝑓𝑓1
𝑓𝑓0

=
2𝑘𝑘𝑘𝑘�√2𝜋𝜋 − 2𝛼𝛼𝑘𝑘2(3− 2𝜐𝜐2)�

𝑘𝑘𝑘𝑘 − 2𝜋𝜋�1 + 𝛾𝛾𝑒𝑒𝑘𝑘2
𝜑𝜑1(𝑥𝑥, 𝑡𝑡) (16) 

 
In this equation, the quantum effect is expressed by the 𝛼𝛼-term, and parameter 𝜐𝜐 is 

the speed of the electrons which obey the Maxwell-Boltzmann distribution as given in 
Eq.(8). Although every electron is most likely to have the most-probable speed, 𝜐𝜐𝑇𝑇𝑇𝑇, 
which is used for the unit of the speed in this paper, it is always in a random motion and 
can move at various speeds. Thus, the average speed of all the electrons equals zero since 
the distribution function, 𝑓𝑓0, is symmetric to 𝜐𝜐 = 0. However, all the electrons have 
kinetic energies, as expressed by the dimension-free 𝜐𝜐2, which are determined by the 
internal thermal energy dependent of their temperature, 𝑇𝑇𝑒𝑒, irrelevant of the directions 
the speeds are in. The collective average kinetic energy of 𝜐𝜐2, and the root-mean-square 
speed of 𝜐𝜐 provided by this energy, are 3/2 and �3/2, respectively, for the given electron 
Maxwell-Boltzmann distribution of Eq.(8) at the normal brain states. Using 𝜐𝜐 = �3/2 
in Eq.(16) makes the quantum 𝛼𝛼-term become zero, that is, the quantum effect does not 
exist in brain activities in general cases where the brain thermal equilibrium is only 
disturbed by electrostatic perturbations under normal conscious conditions. 

However, the brain temperature is not always stable but fluctuates within, say, a few 
degrees as measured in laboratory experiments, especially in situations like a sudden 
head trauma, stroke, headache, mood disorder, etc.28 For a serious deviation of ±5°𝐶𝐶 
relative to 𝑇𝑇0~300 K, the variation above and below 𝜐𝜐2 = 3/2, ∆𝜐𝜐2, is ±1.67%. In this 
case, the ratio, R, of the quantum 𝛼𝛼-term to the classical perturbation for 𝑘𝑘 = 1/�𝛾𝛾𝑒𝑒 is 

 

𝑅𝑅 ≤
2𝛼𝛼𝑘𝑘2(3− 2∆𝜐𝜐2)

√2𝜋𝜋
= ±10.63% (17) 

                                                           
28 Wang H, Wang B, Normoyle KP, et al. 2014. Brain temperature and its fundamental properties: 
a review for clinical neuroscientists. Frontiers in Neuroscience, 8, 307, pp.1-17. 



 JOHN Z. G. MA 101 

 
Thus, in the absence of an external magnetic field, 𝐵𝐵0, the quantum effect 

contributes no more than 11% of the classical electrostatic perturbation even in the 
unusual circumstances.  

3.2 In the presence of  external magnetic field, 𝐵𝐵0 

It is worth to see the influence of 𝐵𝐵0 on the above results. Although 𝐵𝐵0 may contributes 
to an extra acceleration in  d𝜐𝜐/d𝑡𝑡 in Eq.(9) due to a possible Lorentz force, 
−(𝑒𝑒/𝑚𝑚𝑒𝑒)𝐯𝐯 × 𝐁𝐁0, it does not cause any gains or losses in electron energy but only changes 
the velocity direction. Neglecting non-electromagnetic components, Eq.(7) is still valid. 
However, both Eq.(9) and Eq.(5) are generalized in a 3D (x,y,z)-frame, respectively, 
where 𝐁𝐁0 is assumed along z: 

 

⎩
⎪
⎨

⎪
⎧d𝑓𝑓1

d𝑡𝑡
=
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ∙ 𝛁𝛁𝑓𝑓1 +
d𝐯𝐯
d𝑡𝑡

∙ 𝛁𝛁𝐯𝐯𝑓𝑓1 = −
𝑒𝑒
𝑚𝑚𝑒𝑒

𝛁𝛁𝜑𝜑1 ∙ 𝛁𝛁𝐯𝐯𝑓𝑓0 +
𝑒𝑒ℏ2

24𝑚𝑚𝑒𝑒
3  𝛁𝛁3𝜑𝜑1 ∙ 𝛁𝛁𝐯𝐯𝟑𝟑𝑓𝑓0

𝛁𝛁2𝜑𝜑1 =
𝑒𝑒
𝜀𝜀0
�𝑓𝑓1d𝐯𝐯

  

 
 
(18) 

 
and  
 

d𝐱𝐱
d𝑡𝑡

= 𝐯𝐯  and   
d𝐯𝐯
d𝑡𝑡

= −
𝑒𝑒
𝑚𝑚𝑒𝑒

𝐯𝐯 × 𝐁𝐁0 (19) 

 
 
 
in which 𝜑𝜑0 = 0 is also considered. Define subscripts “⊥” and “||” to denote the 
components perpendicular and parallel to 𝐁𝐁0, respectively. After adopting the 
backward-mapping technique again to express 𝐯𝐯 = {𝐯𝐯⊥, 𝜐𝜐∥} (in which 𝐯𝐯⊥ = �υ𝑥𝑥 ,υ𝑦𝑦�) 
and 𝐱𝐱 = {𝑥𝑥,𝑦𝑦, 𝑧𝑧} at the initial state, 𝑡𝑡′, by those at the final state, t, and, let Ω = 𝑒𝑒𝐵𝐵0/𝑚𝑚𝑒𝑒, 
we have 
 

𝐯𝐯(𝑡𝑡′) = �
υ𝑥𝑥(𝑡𝑡′) = υ𝑥𝑥 cos[Ω(𝑡𝑡′ − 𝑡𝑡)] + υ𝑦𝑦 sin[Ω(𝑡𝑡′ − 𝑡𝑡)]

    υ𝑦𝑦(𝑡𝑡′) = −υ𝑥𝑥 sin[Ω(𝑡𝑡′ − 𝑡𝑡)] + υ𝑦𝑦 cos[Ω(𝑡𝑡′ − 𝑡𝑡)]
υ𝑧𝑧(𝑡𝑡′) = υ𝑧𝑧 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.

 
 
(20) 

 
and, 
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𝐱𝐱(𝑡𝑡′) = 𝐱𝐱(𝑡𝑡) +
1
Ω

× �
𝑥𝑥(𝑡𝑡′ − 𝑡𝑡) = υ𝑥𝑥 sin[Ω(𝑡𝑡′ − 𝑡𝑡)] − υ𝑦𝑦{cos[Ω(𝑡𝑡′ − 𝑡𝑡)] − 1}
𝑦𝑦(𝑡𝑡′ − 𝑡𝑡) = υ𝑥𝑥{cos[Ω(𝑡𝑡′ − 𝑡𝑡)] − 1} + υ𝑦𝑦 sin[Ω(𝑡𝑡′ − 𝑡𝑡)]

𝑧𝑧(𝑡𝑡′ − 𝑡𝑡) = Ωυ𝑧𝑧(𝑡𝑡′ − 𝑡𝑡)
 

 
(21) 

 
Writing a 3D wavenumber 𝐤𝐤 = {𝐤𝐤⊥,𝑘𝑘∥}. The generalized 3D expression of the 

perturbed potential is 
 

𝜑𝜑1(𝐱𝐱, 𝑡𝑡) = 𝜑𝜑10𝑒𝑒𝑖𝑖(𝐤𝐤∙𝐱𝐱−𝜔𝜔𝑡𝑡)  →  ∇𝜑𝜑1 = 𝑖𝑖𝐤𝐤𝜑𝜑1, and,∇3𝜑𝜑1 = −𝑖𝑖𝐤𝐤3𝜑𝜑1 (22) 
 
which reduces to Eq.(10) in the 1D case. In addition, the generalized Eq.(11) is 
 

𝑓𝑓1(𝐱𝐱,𝐯𝐯, 𝑡𝑡) = � d𝑡𝑡′
𝑡𝑡

−∞
�𝛼𝛼 ∇3𝜑𝜑1∇𝐯𝐯3𝑓𝑓0 − √2𝜋𝜋 ∇𝜑𝜑1∇𝐯𝐯𝑓𝑓0�𝐱𝐱=𝐱𝐱�𝑡𝑡′�,𝐯𝐯=𝐯𝐯�𝑡𝑡′�  (23) 

 
where 𝑓𝑓0 in Eq.(8) is in a generalized 3D form:  
 

𝑓𝑓0 =
𝑛𝑛0
√𝜋𝜋3

𝑒𝑒−𝐯𝐯02 =
𝑛𝑛0
√𝜋𝜋3

𝑒𝑒𝜑𝜑−𝐯𝐯2 → ∇𝐯𝐯𝑓𝑓0 = −2𝐯𝐯𝑓𝑓0 , and,∇𝐯𝐯3𝑓𝑓0 = 4𝐯𝐯(3 − 2𝐯𝐯2)𝑓𝑓0  (24) 
 
Finally, the I-integration in Eq.(13) has a generalized form given as25   

 

𝐼𝐼 = � 𝑖𝑖𝐤𝐤 ∙ 𝐯𝐯(𝑡𝑡′)𝑒𝑒𝑖𝑖�𝐤𝐤∙𝐱𝐱�𝑡𝑡′�−𝜔𝜔𝑡𝑡′�d𝑡𝑡′
𝑡𝑡

−∞
= 𝑒𝑒𝑖𝑖(𝐤𝐤∙𝐱𝐱−𝜔𝜔𝜔𝜔)𝛸𝛸 (25) 

 
in which 
 

𝛸𝛸 = 1 − 𝑒𝑒−
𝑖𝑖𝑘𝑘⊥𝜐𝜐⊥ sin𝜙𝜙

Ω �
𝜔𝜔𝑒𝑒𝑖𝑖𝑖𝑖𝜙𝜙𝐽𝐽𝑛𝑛 �

𝑘𝑘⊥𝜐𝜐⊥
Ω �

𝜔𝜔 − 𝑘𝑘∥𝜐𝜐∥ + 𝑛𝑛Ω
𝑛𝑛

  
𝐵𝐵0=0,𝑛𝑛=0
�⎯⎯⎯⎯⎯�   𝛸𝛸 =

𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘 − 𝜔𝜔

 (26) 

 
where 𝜙𝜙 is the angle between 𝐤𝐤⊥ and 𝐯𝐯⊥; and 𝐽𝐽𝑛𝑛 is the Bessel function. Thus, the 
generalized form of Eq.(14) is:  
 

𝑓𝑓1
𝑓𝑓0

= 2𝑋𝑋 ∙ �√2𝜋𝜋 − 2𝛼𝛼𝐤𝐤2(3− 2𝐯𝐯2)�𝜑𝜑1(𝐱𝐱, 𝑡𝑡) (27) 

 
On the one hand, for 𝐵𝐵0 = 0 and 𝑛𝑛 = 0, Eq.(27) recovers the solution given by 

Eq.(14) after taking into account the reduced expression of 𝛸𝛸 in Eq.(26). On the other 
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hand, because Ω~8,800 krad/s ≪ 𝜔𝜔~𝑘𝑘⊥𝜐𝜐⊥~𝑘𝑘∥𝜐𝜐∥ of the order of 𝜔𝜔𝑝𝑝𝑝𝑝~1011krad/s, 
equivalent to 𝐵𝐵0 → 0 and 𝑛𝑛 = 0, 𝛸𝛸 in Eq.(26) approach to [1 −𝜔𝜔/(𝑘𝑘𝑘𝑘)]−1. Thus,  

 
𝑓𝑓1
𝑓𝑓0

=
2�√2𝜋𝜋 − 2𝛼𝛼𝐤𝐤2(3− 2𝐯𝐯2)�

1 −𝜔𝜔/(𝑘𝑘𝑘𝑘) 𝜑𝜑1(𝐱𝐱, 𝑡𝑡) (28) 

 
A comparison between Eq.(28) and Eq.(14) shows that the external magnetic field 

modulates neither the relative amplitude of the perturbation to the mean-field, nor the 
quantum effect obtained in the absence of the magnetic field, except that the 1D scalar 
𝑘𝑘 and 𝜐𝜐 are substituted by the 3D vector 𝐤𝐤 and 𝐯𝐯 in the quantum 𝛼𝛼-term.      

4. CONCLUSION 

The classical PBD theory11 was proven to provide a useful tool in the data-fit modelling 
of measured brain EEG signals, regardless of either the highly nonlinear structures 
featured by a train of storm-like wave packets, or the quasilinear envelops featured by 
deformed linear waves.12 However, it is important to make use of the quantum mechanics 
to explain the neuro-and-cognitive mechanism of human consciousness.29 This paper 
takes into account the quantum behaviour of electrons to investigate the quantum role 
played in brain consciousness.   

Unclassical quantum effects arise when particle density is too high or temperature is 
too low. In human brain, the charge density is in the order of 1026 m-3, so high enough to 
give two dimension-free parameters, 𝜒𝜒1 and 𝜒𝜒2 much larger than 1. No doubt, the brain 
plasma is non-classical and may be influenced by the quantum effect if it is not mitigated 
or cancelled by some mechanism(s). This paper formulates a quantum plasma model by 
generalizing PBD’s Vlasov-Maxwell equations with the extra quantum term. The 
obtained electrostatic electron Wigner-Poisson equations are solved in both the absence 
and presence of an external magnetic field by applying a backward-mapping approach 
to the motion of Maxwellian electrons. The perturbation of the quantum term is 
obtained to superimpose on the classical perturbation of the mean-field property. Main 
results include: 
(1) Different from the classical perturbation which is determined by the 1st-order 

derivatives of both 𝜑𝜑 and 𝑓𝑓0, the quantum perturbation is dependent of the 3rd-order 
derivatives of the two parameters; 

(2) In the absence of an external magnetic field, the quantum perturbation competes 
with the classical electrostatic perturbation, and is determined by the difference 

                                                           
29 E.g., Vitiello G 2011. Hiroomi Umezawa and quantum field theory. NeuroQuantology, 9, 3, 
pp.402-412. 
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between 3 and the dimensional magnitude of 2(𝜐𝜐 𝜐𝜐𝑇𝑇𝑇𝑇⁄ )2; 
(3) Under the same condition, the quantum perturbation has no effects at the normal 

brain states where the collective speed 𝜐𝜐 of all the Maxwell-Boltzmann electrons 
takes the dimensional root-mean-square speed, �3/2𝜐𝜐𝑇𝑇𝑇𝑇; 

(4) Under the same condition, if brain temperature fluctuates, a serious deviation of ±5 
K relative to ~300 K causes the quantum effect to contribute no more than 11% of 
the classical perturbation;   

(5) In the presence of the external magnetic field, the above results are not influenced, 
except the 1D scalar parameters substituted by corresponding 3D vectors in the 
quantum 𝛼𝛼-term.       
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